
A Physical and Virtual Compute Cluster Resource Load Balancing Approach to
Data-Parallel Scientific Workflow Scheduling*

Jianwu Wang1, Prakashan Korambath2, Ilkay Altintas1
1 San Diego Supercomputer Center, UCSD

{jianwu, altintas}@sdsc.edu

2 Institute for Digital Research and Education, UCLA
ppk@ats.ucla.edu

Abstract— To execute workflows on a compute cluster re-
source, workflow engines can work with cluster resource
manager software to distribute jobs into compute nodes on the
cluster. We discuss how to interact with traditional Oracle
Grid Engine and recent Hadoop cluster resource managers
using a dataflow-based scheduling approach to balance com-
pute resource load for data-parallel workflow execution. Our
experiments show that: 1) The presented approach can bal-
ance computational resource load well by interacting with the
resource managers and provides good execution performance
on both physical and virtual clusters; 2) Oracle Grid Engine
outperforms Hadoop for CPU-intensive applications on small-
scale clusters.

Keywords- data-parallel workflow scheduling, virtual cluster,
load balancing, cluster resource manager comparison

I. INTRODUCTION

Scientific workflow management systems have demon-
strated their ability to help domain scientists solve scientific
problems by synthesizing different data and computing re-
sources. Data parallelism in scientific workflows describes
parallel execution of workflow on multiple parts of input
data if these input parts can be processed independently [1].
To speed up workflow execution, many data-parallel
workflows are run on compute cluster resources where clus-
ter resource managers are usually employed to distribute
jobs on the clusters. Currently, two kinds of resource man-
ager software are commonly used: (i) traditional resource
manager software, such as Oracle Grid Engine (OGE)1 and
Load Sharing Facility (LSF)2, to manage job distribution on
the cluster, and (ii) the relatively new Hadoop software3 to
manage data distribution along with job distribution on a
cluster.

Through a natural scheduling approach and its applica-
tion to scientific use cases, this paper discusses how to work
with resource managers to schedule data-parallel scientific
workflows and compare their performance differences.

II. A DATA-PARALLEL SCIENTIFIC WORKFLOW

SCHEDULING APPROACH

Scheduling data-parallel workflows on limited nodes be-
fore knowing the execution times of the tasks in the

*This work was supported by NSF SDCI Award OCI-0722079, NSF
CEO:P Award No. DBI 0619060, DOE SciDac Award No. DE-FC02-
07ER25811, and UCGrid project. We also thank the AWS in Education
Research Grants from Amazon.com, Inc for EC2 usage credit.
1 http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
2 http://www.platform.com/workload-management
3 http://hadoop.apache.org/core/

workflows is a challenge. A simple example of this chal-
lenge is illustrated in Figure 1. The workflow in Figure 1
has three tasks (Tasks A, B and C) and three input parts (In-
puts 1, 2 and 3). The tasks have to be executed sequentially;
yet the inputs can be processed independently. Suppose two
homogenous nodes are available to run the workflow. The
task execution time for each input on one node is listed in
the execution time table in Figure 1. From the table, we can
see the execution times of the same task for different inputs
are very different. For many real workflow applications, the
number of inputs and tasks could be too large to get all ex-
ecution time information before scheduling the workflow.

Figure 1. A data-parallel workflow scheduling approach.

Most task scheduling problems in distributed environ-
ments have no optimal solutions in polynomial time [2],
especially when workflow task execution times are un-
known beforehand. In our approach, we only use a natural
way to schedule tasks, namely putting executable tasks with
their inputs in a first-in, first-out (FIFO) queue and schedul-
ing them to nodes that are available. In this approach
(shown in Figure 1), task executions for each input are
represented as jobs. Once an input is available, a corres-
ponding job will be created and submitted to a job scheduler
asynchronously. All the tasks in the workflow will share one
job scheduler which manages submitted jobs in a FIFO

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

2011 IEEE World Congress on Services

978-0-7695-4461-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERVICES.2011.50

212

queue. The shared job scheduler distributes jobs to available
compute nodes. Here, we use notation A1 to present the job
for task A processing input 1, and use the similar way for
other jobs. The characteristics of our approach are explained
as follows using the example in Figure 1.

Data-driven Workflow Execution: In data-driven
workflow, i.e., dataflow, execution semantics, tasks are ex-
ecuted based on input data availability. For each task, inputs
will be processed in order and be automatically buffered in a
queue if the task is currently busy. In Figure 1, job A3 is
submitted after job A2, and B2 is the first job in task B since
A2 finishes earlier than other jobs in task A and then input 2
is the first input for task B.

Pipeline Parallelism: Pipeline parallelism describes
how a set of data is processed simultaneously among a
group of sequential tasks, each task processing one or more
data elements of the set [1]. With pipeline parallelism, if an
input finishes its processing in one task, it does not need to
wait for the completion of the other inputs in the same task
before being processed by the downstream tasks in the
workflow. For instance, input 2 can be processed in task B
before all inputs finish their processing in task A in Figure 1.

Asynchronous Job Submission: Since execution time
may vary for different jobs, asynchronous job submission
and status checking enables the workflow execution engine
to get the information that a job is done without waiting for
the completion of other jobs. In a pipeline, this finished job
will immediately trigger downstream tasks. In this way, job
B2 in the example can get started before all jobs in task A
finishes.

Shared Job Scheduler: A job scheduler manages mul-
tiple computing nodes and distributes jobs to available
nodes. In our approach, jobs in different tasks are managed
by the same job scheduler to achieve overall load balancing
on distributed nodes.

Job Partition: If a job in a task can be further split into
multiple small independent sub jobs, especially for down-
stream tasks, it would help to balance the load of compute
nodes through the shared job scheduler. In the example, if
job C1 can be evenly split to 7 sub jobs, the 6th sub job will
be distributed into node 2, and then the whole workflow can
be finished at time unit 28 instead of 29.

III. WORKFLOWS INTERACTING WITH CLUSTER

RESOURCE MANAGERS

We demonstrate our approach to interact with OGE and
Hadoop via a Kepler workflow use case in Computational
Chemistry. Kepler workflow system4 satisfies the characte-
ristics of the approach.

The use case is an enzyme design process that goes
through three computational steps, namely RosettaMatch,
RemoveBChain and RosettaDesign, before validation by
experiments [3]. The execution of these programs takes
around 300 MB memory on one machine, and these pro-
grams are CPU intensive since over 99.9% of their execu-
tion time is taken by CPU. The entire process can be per-
formed independently for different inputs, i.e., scaffolds.

4 http://kepler-project.org/

The total computation time for each input varies greatly,
ranging from half a minute to five hours.

A. Kepler Workflow Interacting with Oracle Grid Engine

Like other traditional cluster resource managers, OGE is
used to submit, schedule, distribute, and manage the execu-
tion of large numbers of jobs on the nodes of a cluster. A
shared file system is normally employed for data and pro-
gram access from the nodes.

Figure 2 shows a workflow that interacts with OGE on
one compute cluster. The connection links between the
components, called actors in Kepler, describe their depen-
dencies, which determine that each input has to go through
the three processing tasks sequentially. Once one actor ge-
nerates its output, the output will trigger the execution of the
downstream actors, e.g., the RemoveBChain actor will start
processing once it gets data from the RosettaMatch actor.

Inside a composite actor, such as RosettaMatch, the sub-
workflow dynamically creates job scripts according to
workflow inputs and submits them asynchronously to the
OGE job scheduler on the cluster using Kepler actors.

Figure 2. Kepler workflow for enzyme design process using OGE.

B. Kepler Workflow Interacting with Hadoop

The Hadoop software is composed of a MapReduce run-
time system and a distributed file system, called HDFS. In-
put data is automatically partitioned into chunks and stored
on compute nodes. User programs are distributed and ex-
ecuted in parallel on the partitioned data blocks. HDFS sup-
ports MapReduce execution model [4] with the capability of
automatic data redundancy and diffusion among each node
in the Hadoop cluster. A Hadoop node dispatches tasks and
manages the executions of the other Hadoop nodes.

The workflow in Figure 3 is built using the MapReduce
actor in Kepler. Since Map and Reduce are two separate
functions in the MapReduce programming model, Map and
Reduce are treated as two independent sub-workflows in
Kepler MapReduce actor [5]. However, since the use case
only requires “embarrassingly parallel execution” for differ-
ent inputs, only a Map sub-workflow is needed here.

In this workflow, job files to be executed in compute
nodes are put into HDFS once they are created and asyn-
chronously submitted to Hadoop scheduler via an AsynMa-
pReduce actor. In the Map sub-workflow of each AsynMa-
pReduce actor, job information is gotten from HDFS and the

213213213213213213213

Figure 3. Kepler workflow for enzyme design process using Hadoop.

job is executed by an ExternalExecution actor. This
workflow does not take much advantage of data distribution
in HDFS since legacy domain-specific programs, like Roset-
ta programs in our use case, cannot directly process data in
HDFS. Thus in this workflow, Rosetta programs and data-
base are still accessed from the standard shared file system
in the cluster, not HDFS. We will discuss possible solutions
to the problem in Section 4.

IV. EXPERIMENTS AND DISCUSSIONS

The above developed workflows are tested in three kinds
of physical and virtual compute cluster environments. A
typical compute cluster consists of compute nodes, a control
node, a storage file system and network connection. The
control node will manage the job execution on the compute
nodes through OGE or Hadoop. Users will access the envi-
ronment through the control node, and run their applications
on the compute nodes using the data from the external sto-
rage server which normally hosts a shared file system for the
nodes.

In our experiments, we create two kinds of virtual clus-
ters based on different virtualization hosts: Private Cloud
Cluster and Public Cloud Cluster. A private cloud cluster is
created based on users’ existing physical cluster. We only
virtualize compute nodes and share the control node, the
external storage server and the resource manager with the
host cluster. A public cloud cluster is created from a public
cloud provider, such as Amazon Elastic Compute Cloud
(EC2)5, where all the cluster components are built based on
the public cloud environment.

Our experiments on the physical cluster and the private
cloud cluster are carried out in a dedicated Beowulf type
cluster, which consists of commodity x86_64 hardware and
1 Gb Ethernet switch for networking. Storage is provided
through RAID array servers, which are NFS servers
mounted on the compute nodes. Its default scheduler is OGE.
The nodes used in this experiment have 8 GB memory, 2
dual core AMD 2.0 GHz CPUs and CentOS 5.5 Linux in-
stalled on the local hard drives. The private cloud cluster
environment is built using Xen as the hypervisor. Each vir-
tual compute node only has bare CentOS 5.5 with 6 GB
memory. In both environments, Kepler, the Rosetta database
and the Rosetta programs for the enzyme design process use
case are accessed from the mounted NFS server.

5 http://aws.amazon.com/ec2/

The public cloud clusters on EC2 are built by StarClus-
ter6 toolkit, which automatically instantiates instances based
on provided Amazon machine image (AMI), attaches Ama-
zon Elastic Block Storage (EBS) volumes, installs OGE job
scheduler, and installs NFS to build a shared file system on
the EBS volumes. We use the large instance type for all the
nodes in the cluster. Each node has 7.5 GB memory and 2
virtual CPU cores. In this environment, Kepler, the Rosetta
database and the Rosetta programs are accessed from an
EBS volume that are mounted and shared by the NFS ser-
vice on the control node.

For the execution of the OGE workflow, we start the ex-
ecution daemon of OGE on the physical and virtual compute
nodes so that we can submit jobs via the control node where
these jobs will be distributed to the compute nodes. Similar-
ly, Hadoop is configured and started to manage and distri-
bute jobs for the Hadoop workflow in Section 3. Simple
FIFO queue based scheduling is used in both the OGE and
Hadoop. Each physical or virtual compute node only runs
one job at a time. Since the resources are dedicated and each
workflow is executed separately in our experiments, there is
no queue wait time for each job other than waiting for the
preceding jobs in the workflow to complete.

Figure 4 lists the experiment results for the workflow
runs using two input sets. The first input set includes 5 scaf-
folds which has 5, 5 and 50 jobs for the RosettaMatch, Re-
moveBChain and RosettaDesign task respectively. The
second one includes 10 scaffolds and has 10, 10 and 286
jobs respectively. The execution of the RosettaDesign task
is split into smaller jobs for better resource load balancing.

These results indicate that: 1) On all execution environ-
ments, the execution on four nodes for both the OGE and
Hadoop workflows have good execution acceleration rates
compared to the execution on one node; 2) The execution on
the private cloud cluster only brings very little overhead
(around 1%) over the physical cluster; 3) The Hadoop
workflow execution takes longer time than the OGE
workflow execution. Moreover, our execution monitoring
shows the compute nodes are evenly balanced until remain-
ing job number is less than the compute node number.

Experimental results in Figure 4 also indicate that the
execution performance on the public cloud cluster is always
better than that on other environments, mainly due to the
newer and faster CPU models on the public cloud cluster.
Yet it is hard to measure the exact CPU difference since the
CPU models might be different for the virtual instances.

We think the overhead for the Hadoop workflow execu-
tion is due to several reasons. First, jobs are not directly
executed in Hadoop nodes but wrapped by Kepler MapRe-
duce sub-workflows (as shown at the bottom of Figure 3),
which brings additional overhead compared to the direct job
execution on compute nodes in the OGE workflow. In addi-
tion, scheduling overhead of Hadoop is larger since it needs
extra effort for HDFS management.

Although the Hadoop workflows take longer execution
time than the OGE ones in the experiments, we argue using
Hadoop still has potential advantages in some aspects.

6 http://web.mit.edu/stardev/cluster/

214214214214214214214

Figure 4. Execution time comparison for the enzyme design process.

The first aspect is data-intensive computation. HDFS
supports automatic data partition among Hadoop nodes,
and user programs can be distributed and executed in pa-
rallel on the partitioned data blocks. If stored in the HDFS,
the data and programs can be easily shared among and
accessed from compute nodes, providing data locality, and
reducing data connection traffic on shared file system.
With HDFS, Hadoop can potentially outperform tradition-
al job schedulers for data-intensive application execution
on large-scale compute clusters. One challenge here is that
legacy domain-specific programs, like Rosetta programs in
our use case, cannot directly process data in HDFS. Possi-
ble solutions for it are: 1) Staging data out from HDFS to
standard file system on the local node before program ex-
ecution; 2) Extending legacy programs to be able to follow
MapReduce programming model and access data in HDFS;
3) Using toolkits like FUSE to allow HDFS mounted as a
standard file system7.

The second aspect is workflow description for execu-
tion logic on compute nodes. It is intuitive to describe the
execution logic to be run on Hadoop nodes through sub-
workflows, as shown at the bottom of Figure 3. In addition,
since the execution logic is explicitly specified in a sub-
workflow rather than an external script, provenance infor-
mation can be easily captured by the workflow engine.

V. CONCLUSIONS

To validate workflow engines interacting with cluster
resource managers for efficient workflow execution on
cluster resources, two compute cluster resource managers,
namely OGE and Hadoop, are used and compared via
scientific workflow applications. Our experiments show
dataflow-based workflow scheduling approach can have
good resource load balancing and performance speedup
for data-parallel workflow applications on physical and
virtual compute clusters. The experiments also show run-
ning CPU intensive jobs with moderate I/O access hardly
have performance deterioration on a virtual environment.

There are increasing efforts for workflow research [6, 7]
and systems such as Oozie8, Azkaban9 and Cascading10 to

7 http://wiki.apache.org/hadoop/MountableHDFS
8 http://yahoo.github.com/oozie/index.html
9 http://sna-projects.com/azkaban/

work with the MapReduce programming model or Hadoop
environment. Yet none of the above work compares their
performance with traditional resource manager like OGE.
Our experiments show that traditional resource manager
can have better performance for those data-parallel
workflow applications that can be executed using both
Hadoop and traditional resource managers on small-scale
clusters. The performance comparison result is the same
when testing on a physical compute cluster and two virtual
ones. We also analyze the reasons for the performance
difference and potential advantages using Hadoop.

For future work, we plan to improve the HDFS utiliza-
tion and compare the execution performance for data-
intensive workflow applications on large-scale clusters.

REFERENCES
[1] C. Pautasso, G. Alonso. “Parallel Computing Patterns for Grid

Workflows”. Proc. of Workshop on Workflows in Support of
Large-Scale Science (WORKS06), 2006

[2] H. El-Rewini, T. Lewis, H. Ali. “Task Scheduling in Parallel and
Distributed Systems”. ISBN: 0-13-099235-6, PTR Prentice Hall,
1994.

[3] J. Wang, P. Korambath, S. Kim, S. Johnson, K. Jin, D. Crawl, I.
Altintas, S. Smallen, B. Labate, K. N. Houk. “Theoretical Enzyme
Design Using the Kepler Scientific Workflows on the Grid”. Proc.
of the 5th Workshop on Computational Chemistry and Its
Applications (5th CCA) at Int Conf. on Computational Science
(ICCS 2010).

[4] J. Dean and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. Proc. of the 6th Symp. on
Operating Systems Design and Implementation (OSDI 2004), pp.
137-150. USENIX Association, 2004.

[5] J. Wang, D. Crawl, I. Altintas. “Kepler + Hadoop : A General
Architecture Facilitating Data-Intensive Applications in Scientific
Workflow Systems”. Proc. of the 4th Workshop on Workflows in
Support of Large-Scale Science (WORKS09) at Supercomputing
2009 (SC2009) Conference, 2009.

[6] C. Zhang, H. D. Sterck. “CloudWF: A Computational Workflow
System for Clouds Based on Hadoop”. Proc. of the 1st Int. Conf.
on Cloud Computing (CloudCom 2009).

[7] X. Fei, S. Lu, C. Lin. “A MapReduce-Enabled Scientific
Workflow Composition Framework”. Proc. of 2009 IEEE Int.
Conf. on Web Services (ICWS 2009), pp. 663-670, 2009.

10 http://www.cascading.org/

0

2

4

6

8

10

12

14

10 inputs on
1 compute node

10 inputs on
4 compute nodes

5 inputs on
1 compute node

5 inputs on
4 compute nodes

W
al

l c
lo

ck
 ti

m
e

(H
ou

r) Physical cluster with OGE Physical cluster with Hadoop

Private cloud cluster with OGE Private cloud cluster with Hadoop

Public cloud cluster with OGE Public cloud cluster with Hadoop

215215215215215215215

